banner



Bickel And Doksum Mathematical Statistics Pdf

Type of statistical model

This article is about statistics. For mathematical and computer representation of objects, see Solid modeling.

In statistics, a parametric model or parametric family or finite-dimensional model is a particular class of statistical models. Specifically, a parametric model is a family of probability distributions that has a finite number of parameters.

Definition [edit]

A statistical model is a collection of probability distributions on some sample space. We assume that the collection, 𝒫 , is indexed by some set Θ. The set Θ is called the parameter set or, more commonly, the parameter space. For each θ ∈ Θ, let Pθ denote the corresponding member of the collection; so Pθ is a cumulative distribution function. Then a statistical model can be written as

P = { P θ | θ Θ } . {\displaystyle {\mathcal {P}}={\big \{}P_{\theta }\ {\big |}\ \theta \in \Theta {\big \}}.}

The model is a parametric model if Θ ⊆ ℝ k for some positive integer k .

When the model consists of absolutely continuous distributions, it is often specified in terms of corresponding probability density functions:

P = { f θ | θ Θ } . {\displaystyle {\mathcal {P}}={\big \{}f_{\theta }\ {\big |}\ \theta \in \Theta {\big \}}.}

Examples [edit]

  • The Poisson family of distributions is parametrized by a single number λ > 0:
P = { p λ ( j ) = λ j j ! e λ , j = 0 , 1 , 2 , 3 , | λ > 0 } , {\displaystyle {\mathcal {P}}={\Big \{}\ p_{\lambda }(j)={\tfrac {\lambda ^{j}}{j!}}e^{-\lambda },\ j=0,1,2,3,\dots \ {\Big |}\;\;\lambda >0\ {\Big \}},}

where pλ is the probability mass function. This family is an exponential family.

  • The normal family is parametrized by θ = (μ, σ), where μ ∈ ℝ is a location parameter and σ > 0 is a scale parameter:
P = { f θ ( x ) = 1 2 π σ exp ( ( x μ ) 2 2 σ 2 ) | μ R , σ > 0 } . {\displaystyle {\mathcal {P}}={\Big \{}\ f_{\theta }(x)={\tfrac {1}{{\sqrt {2\pi }}\sigma }}\exp \left(-{\tfrac {(x-\mu )^{2}}{2\sigma ^{2}}}\right)\ {\Big |}\;\;\mu \in \mathbb {R} ,\sigma >0\ {\Big \}}.}

This parametrized family is both an exponential family and a location-scale family.

  • The Weibull translation model has a three-dimensional parameter θ = (λ, β, μ):
P = { f θ ( x ) = β λ ( x μ λ ) β 1 exp ( ( x μ λ ) β ) 1 { x > μ } | λ > 0 , β > 0 , μ R } . {\displaystyle {\mathcal {P}}={\Big \{}\ f_{\theta }(x)={\tfrac {\beta }{\lambda }}\left({\tfrac {x-\mu }{\lambda }}\right)^{\beta -1}\!\exp \!{\big (}\!-\!{\big (}{\tfrac {x-\mu }{\lambda }}{\big )}^{\beta }{\big )}\,\mathbf {1} _{\{x>\mu \}}\ {\Big |}\;\;\lambda >0,\,\beta >0,\,\mu \in \mathbb {R} \ {\Big \}}.}
  • The binomial model is parametrized by θ = (n, p), where n is a non-negative integer and p is a probability (i.e. p ≥ 0 and p ≤ 1):
P = { p θ ( k ) = n ! k ! ( n k ) ! p k ( 1 p ) n k , k = 0 , 1 , 2 , , n | n Z 0 , p 0 p 1 } . {\displaystyle {\mathcal {P}}={\Big \{}\ p_{\theta }(k)={\tfrac {n!}{k!(n-k)!}}\,p^{k}(1-p)^{n-k},\ k=0,1,2,\dots ,n\ {\Big |}\;\;n\in \mathbb {Z} _{\geq 0},\,p\geq 0\land p\leq 1{\Big \}}.}

This example illustrates the definition for a model with some discrete parameters.

[edit]

A parametric model is called identifiable if the mapping θPθ is invertible, i.e. there are no two different parameter values θ 1 and θ 2 such that P θ 1  = P θ 2 .

Comparisons with other classes of models [edit]

Parametric models are contrasted with the semi-parametric, semi-nonparametric, and non-parametric models, all of which consist of an infinite set of "parameters" for description. The distinction between these four classes is as follows:[ citation needed ]

  • in a "parametric" model all the parameters are in finite-dimensional parameter spaces;
  • a model is "non-parametric" if all the parameters are in infinite-dimensional parameter spaces;
  • a "semi-parametric" model contains finite-dimensional parameters of interest and infinite-dimensional nuisance parameters;
  • a "semi-nonparametric" model has both finite-dimensional and infinite-dimensional unknown parameters of interest.

Some statisticians believe that the concepts "parametric", "non-parametric", and "semi-parametric" are ambiguous.[1] It can also be noted that the set of all probability measures has cardinality of continuum, and therefore it is possible to parametrize any model at all by a single number in (0,1) interval.[2] This difficulty can be avoided by considering only "smooth" parametric models.

See also [edit]

  • Parametric family
  • Parametric statistics
  • Statistical model
  • Statistical model specification

Notes [edit]

  1. ^ Le Cam & Yang 2000, §7.4
  2. ^ Bickel et al. 1998, p. 2

Bibliography [edit]

  • Bickel, Peter J.; Doksum, Kjell A. (2001), Mathematical Statistics: Basic and selected topics, Volume 1 (Second (updated printing 2007) ed.), Prentice-Hall
  • Bickel, Peter J.; Klaassen, Chris A. J.; Ritov, Ya'acov; Wellner, Jon A. (1998), Efficient and Adaptive Estimation for Semiparametric Models, Springer
  • Davison, A. C. (2003), Statistical Models, Cambridge University Press
  • Le Cam, Lucien; Yang, Grace Lo (2000), Asymptotics in Statistics: Some basic concepts, Springer
  • Lehmann, Erich L.; Casella, George (1998), Theory of Point Estimation (2nd ed.), Springer
  • Liese, Friedrich; Miescke, Klaus-J. (2008), Statistical Decision Theory: Estimation, testing, and selection, Springer
  • Pfanzagl, Johann; with the assistance of R. Hamböker (1994), Parametric Statistical Theory, Walter de Gruyter, MR 1291393

Bickel And Doksum Mathematical Statistics Pdf

Source: https://en.wikipedia.org/wiki/Parametric_model

Posted by: deboermosedince42.blogspot.com

0 Response to "Bickel And Doksum Mathematical Statistics Pdf"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel